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Abstract

This study addresses the identification of damping ratios and natural frequencies in linear structural dynamic systems.

A previously proposed method based on the Morlet wavelet transform of the system’s response is investigated analytically.

The method can be applied to single- or multi-degree of freedom, lightly or heavily damped systems. It utilizes a

relationship between natural frequency, damping ratio and the continuous Morlet wavelet transform of the system

response. It is found that the validity of the relationship depends on the scaling factor a, translation factor b, and the

frequency parameter o0 of the Morlet wavelet transform. A general guideline of choosing a, b, and o0 is provided in this

paper. Both numerical and experimental results verify the theoretical analysis.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Parameter identification is a fundamental problem in vibration engineering practice. It is concerned with the
estimation of system parameters like natural frequencies and damping ratios. With these parameters, one can
obtain the mathematical model for representing a system’s input–output relationship. Most existing parameter
identification methods are based on the Fourier analysis (see, e.g., Ref. [7]). The Fourier techniques are
especially useful in estimating a system’s natural frequencies. However, there are several restrictions for the
Fourier analysis. First, for noisy data, the spectrum of a signal alone (obtained by FFT) may not provide
adequate information for identification. Some de-noising procedure, such as passing through a low-pass filter
or notch filter, has to be performed in advance to separate the signal from the noise [15]. Second, for multi-
degree-of-freedom (dof) systems with strongly coupled modes, the identification based on the Fourier
technique usually cannot give results as good as those for single-dof systems [24]. Finally, the Fourier
approach cannot obtain good estimation in damping, especially for heavily damped systems. In particular, for
systems with damping ratio greater than 1=

ffiffiffi
2
p

, no peaks exist in the spectrum and the Fourier approach fails.
On the other hand, wavelet analysis has gained a great deal of attention in the engineering literature recently

due to its excellent capability in signal analysis [3,12,13]. The ability of multi-resolution inherent in the wavelet
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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analysis can automatically filter out the noise from the signal in the process of parameter identification [2,6].
No additional filters are needed. Moreover, the wavelet analysis possesses localization property in both time
and frequency domains [2]. Therefore, the frequency resolution of a wavelet transform can be tuned
sufficiently small to separate two signals with close frequency contents. This property is useful for
identification of multi-dof systems with strongly coupled modes.

Many studies have taken the advantages of wavelet analysis to the problems of system identification. Priebe
and Wilson [17] demonstrated that wavelet transform can be used to exploit the time-scale features of
structural responses and hence is potentially useful in system identification applications. In general, there are
two approaches. The first approach is based on discrete wavelet transform. That is, the system’s input and
output signals are spanned by wavelet basis functions. The modal parameters can be obtained by the discrete
wavelet transform of input and output signals [21]. Robertson et al. [18,19] presented a method of extracting
the impulse response from the measured response histories and disturbance of linear structural dynamic
systems using discrete wavelet transform. The obtained impulse responses were then utilized for system
realizations. From the state-space model, the system’s structural modes and damping parameters were
estimated. Ghanem and Romeo [4,5] proposed an identification method for linear time-varying systems and
nonlinear systems using Daubechies wavelet basis. Chen [1] proposed a Haar wavelet-based identification
method for linear time-varying systems. There also exist similar methods for the identification of discrete time
models [14,27,28].

The second approach is based on continuous wavelet transform, which was originally proposed by
Staszewski and Cooper [23]. Later on, Ruzzene et al. [20] and Staszewski [24] found that there exists a
special relationship between modal parameters and the Morlet wavelet transform of the system’s impulse
response. Hence, the modal parameters can be identified accordingly. The multi-resolution property of
wavelet transform was utilized to filter out measurement noise. Furthermore, the localization property of
wavelet transform was used to separate different modes in the multi-dof case. The method has been applied
to real data from a bridge in Ref. [20] and an aircraft in Ref. [26], and was extended to backbone
characteristics in Ref. [25]. Some studies indicated that the Morlet wavelet transform is better than the
Hilbert transform or Hilbert–Huang transform in estimating the modal parameters [20,29]. Following the
same line, several studies have refined the Morlet wavelet-based identification method to achieve better
estimation accuracy [9,11,22,29]. Based on similar analysis with the help of multi-resolution analysis,
Lamarque et al. [10] proposed a wavelet-logarithmic decrement method for damping identification in multi-
dof systems.

Although the identification method by the Morlet wavelet transform has shown promising results, several
issues remain to be studied. First, the method was based on rough approximation using Taylor series
expansion. The assumptions leading to the approximation were vague. Consequently, the limitations of the
method were not clear. In addition, the identification results depend strongly on the proper choice of scaling
factor a, translation factor b, and the frequency parameter o0 of the Morlet wavelet transform. Without more
accurate derivation, the general guideline of choosing proper a, b, and o0 is difficult to obtain. Second, the
results of Ruzzene et al. [20] and Staszewski [24] were based on free response. However, the free or impulse
response is sometimes not easy to obtain in practice. For example, it is in general difficult, if not impossible, to
obtain the free or impulse response for large-scale structural systems such as a bridge. Also, for delicate
equipments such as the DVD system, taking impulse response may damage the system. In these cases, forced
responses are preferred. Finally, the method was verified only for lightly damped systems. No results on
heavily damped systems were presented.

In this work, a more accurate derivation on the Morlet wavelet-based identification method is presented.
Based on the accurate derivation, a general guideline of choosing a, b, and o0 will be provided. Also, the
restrictions of the method will be discussed. It will be shown that the method is actually not restricted to lightly
damped systems. Another objective of this work is to generalize the method to allow for the forced response
as the source signal. It will be shown that this is possible under certain conditions. In general, the forced
response contains the free response (in the transient period). Hence, it can be used for parameter identification.
In addition to simulations, the method will also be verified experimentally.

The paper is organized as follows. After the introduction, the identification method for single-dof systems
is introduced in Section 2. Both free and forced responses will be discussed. In Section 3, the method is
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generalized to multi-dof systems. The method is verified by simulations in Section 4 and by experiments in
Section 5. Finally in Section 6, conclusions are drawn.

2. Single degree-of-freedom system

We consider first a linear time-invariant vibration system with one-degree of freedom. The body of mass m

is connected by a spring and viscous damper to a fixed support, with a harmonic force of frequency o and
amplitude fe acting upon it, in the line of motion. The equation of motion is

m €xþ c _xþ kx ¼ F ðtÞ (1)

where x is the displacement of the mass m, c is the damping, k is the stiffness and F(t) is the excitation force
which is a pure cosine function,

F ðtÞ ¼ f e cos ot (2)

Substituting Eq. (2) into (1), and expressing it in terms of natural frequency on and damping ratio z,
we obtain

€xþ 2zon _xþ o2
nx ¼ f cos ot (3)

where f ¼ fe/m, on
2
¼ k/m, and z ¼ c=2

ffiffiffiffiffiffiffi
mk
p

. It is assumed that 0ozo1.

2.1. Identification by free response

The free response (or impulse response) of the system (3) is given by

xðtÞ ¼ A0e
�zont cosðodt� f0Þ (4)

where A0 and f0 depend on initial condition, and od ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
is the damped natural frequency.

With the system response in hand, the next step is to look for the relations of its Morlet wavelet
transform to the system’s natural frequency and damping ratio. The Morlet wavelet is defined in the time
domain by

gðtÞ ¼ ejo0teð�1=2Þt
2

where o0 is a tunable frequency. By setting t ¼ t�b/a, the Morlet wavelet transformation of the system
response (4) can be expressed as

W gxða; bÞ ¼
ffiffiffi
a
p
Z 1
�1

xðatþ bÞgnðtÞdt (5)

where a is the scaling factor and b is the translation factor of the Morlet wavelet transform, and the superscript
‘‘*’’ denotes the complex conjugate. Substituting Eq. (4) into (5) and expressing the cosine function in the
complex exponential form, one can obtain

W gxða; bÞ ¼ 1
2
A0

ffiffiffi
a
p

e�zonb½I1 þ I2�

where

I1 ¼

Z 1
�1

e�ð1=2Þt
2�ðzonaþjo0�jod aÞtþjðod b�f0Þ dt

I2 ¼

Z 1
�1

e�ð1=2Þt
2�ðzonaþjo0þjod aÞt�jðod b�f0Þ dt

By completing the square on the exponential argument, I1 can be rewritten as

I1 ¼ ejðod b�f0Þþð1=2Þðzonaþjo0�jod aÞ2
Z 1
�1

e�ð1=2Þ tþðzonaþjo0�jod aÞ½ �2 dt (6)
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Similarly, I2 can be rewritten as

I2 ¼ e�jðod b�f0Þþð1=2Þðzonaþjo0þjod aÞ2
Z 1
�1

e�ð1=2Þ tþðzonaþjo0�jod aÞ½ �2 dt (7)

By the method of contour integral, it is shown in appendix that 8a 2 <;b 2 <,Z 1
�1

eð�1=2ÞðtþaþjbÞ
2

dt ¼
ffiffiffiffiffiffi
2p
p

(8)

It implies that both integrals in Eqs. (6) and (7) are equal to
ffiffiffiffiffiffi
2p
p

. Hence, we have

W gxða; bÞ ¼

ffiffiffiffiffiffiffiffi
2pa
p

2
A0e

�zonb ejðod b�f0Þþð1=2Þðzonaþjo0�jod aÞ2 þ e�jðod b�f0Þþð1=2Þðzonaþjo0þjod aÞ2
h i

¼

ffiffiffiffiffiffiffiffi
2pa
p

2
A0e

�zonb�ð1=2Þ½ð1�2z2Þo2
na2þo2

0
�þjzo0onaðey þ e�yÞ

where

y ¼ o0odaþ jðodb� f0Þ � jzonoda2

Assume that

o0odab1 (9)

By taking o0 large enough, this assumption can be easily satisfied. Assumption (9) implies that je�yj5jeyj,
and Wgx(a, b) can be approximated by

W gxða; bÞ �

ffiffiffiffiffiffiffiffi
2pa
p

2
A0e

aþjb (10)

where

a ¼ �zonb� 1
2
½ð1� 2z2Þo2

na2 � 2o0odaþ o2
0�

b ¼ odb� f0 þ zo0ona� zonoda2

Therefore, fixing the scaling factor, i.e., taking a ¼ a0, one can obtain

ln jW gxða0; bÞj � �zonbþ c1 (11)

ffW gxða0; bÞ � odbþ c2 (12)

where c1 and c2 are independent of the translation factor b, and are given by

c1 ¼ �
1

2
½ð1� 2z2Þo2

na2
0 � 2o0oda0 þ o2

0� þ ln

ffiffiffiffiffiffiffiffiffiffi
2pa0

p
A0

2

c2 ¼ � f0 þ zo0ona� zonoda2

It is now obvious that damping ratio z and natural frequency on can be estimated, respectively, from the
slopes of the logarithm of modulus and phase of the wavelet transform with respect to parameter b. That is,

slope of ln jW gxða0; bÞj v:s: b ¼ �zon (13)

slope of ffW gxða0; bÞ v:s: b ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
(14)

These two equations will yield z and on.
Theoretically, the relationships given by Eqs. (13) and (14) hold for any fixed a0 and any range of b.

However, one should note that in general the free response given in Eq. (4) is valid only for positive time, and
x(t) ¼ 0, 8to0. Note also that for given a and b, the wavelet transform works as a window function in both
time and frequency domains [2]. The scaling factor a determines the frequency window and the time window
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depends on both a and b. Hence, the derivation is not valid for b being too small (where the time window
covers the negative time zone). This phenomenon is usually referred to as the end effect [8]. Also in practice,
the response signal is usually contaminated with noise or numerical errors, which will affect the results.
In other words, the wavelet transform of a practical response should be given by

W gx̃ða; bÞ ¼W gxða; bÞ þW gxnða; bÞ

where x̃ðtÞ represents the practical response and xn(t) is the noise. Better results can be obtained by properly
choosing a0 and b to satisfy

jW gxnða0; bÞj5jW gxða0; bÞj (15)

That is, the contribution from noises is negligible.
The above derivations and discussions show that the validity of Eqs. (13) and (14) depends on the scaling

factor a, translation factor b, and the frequency parameter o0 of the Morlet wavelet transform. To yield good
identification results, proper choice of o0, a0 and b is necessary. A general guideline of choosing these
parameters is provided below.
�
 o0 is taken large enough so that Eq. (9) holds.

�
 a0 is taken at the peak of jWgx(a, b)j. The spectrum of the free response will reach a peak in a neighborhood

of the natural frequency. This peak will correspond to that of the wavelet transform. Hence, the frequency
window associated with the choice a0 will cover the neighborhood of the natural frequency. As a result,
when the noise is separated from the natural frequency, it can be automatically filtered out by the frequency
window.

�
 b is taken in the range of positive small values where the log-magnitude plot becomes linear with a negative

slope. The time window with this range of b will cover the transient period and the positive time zone. It is
the transient response that contains the information of modal parameters. As one can see from Eq. (10),
Wgx(a, b) decreases exponentially with the increase in b. Positive small values of b will also make (15) be
easily satisfied. On the other hand, b should not be taken too small; otherwise, the time window will cover
too much of the negative time zone, where the end effect takes place [8,9].

Finally, some remarks on the damping ratio are made. Most similar approaches assumed low damping
ratios [20,24]. A lightly damped system possesses the property that the system’s frequency response is highly
localized in a neighborhood of the natural frequency. It is this property that makes proper a0 and b be easily
chosen so that the associated frequency and time windows can cover the regions with necessary modal
information. For systems with wide band frequency response, it is more difficult to choose a0 and b. As one
can see from Eq. (10), if zX1=

ffiffiffi
2
p

, then jWgx(a, b)j increases with a and no peak exists.
Theoretically, the proposed approach does not respect the size of damping ratio, as implied by Eqs.

(11)–(14). The assumption of low damping ratios is in fact not necessary here. The only assumption is (9).
However, for heavily damped systems, od is small and hence oo should be taken larger so that Eq. (9) still
holds. Moreover, large damping ratios may cause large estimation errors due to numerical errors or external
noises. It should be noted that e�zonb is smaller with larger z, making the contribution of numerical errors or
external noises relatively important. In this case, b should be taken smaller. Also, ao should be taken smaller so
that the frequency window is larger to cover the wide band frequency response. On the other hand, if ao is
taken too small, then a in Eq. (10) is small and again, Eq. (15) may not hold. It is concluded that more delicate
choice of ao and b is necessary for heavily damped systems. In general, large oo, positive small values of ao and
b should be taken.

2.2. Identification by forced response

The task of identification is to provide proper excitation inputs to the system such as impulse, step, or
harmonic signal. The resulting output responses are then utilized to estimate the system parameters. Since
impulse or free responses contain complete system information, they are used in most identification schemes.
However, generating impulse or free responses is difficult or improper in some cases. In these cases, one can
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provide the system with proper forcing excitation instead. Here, it is assumed that the provided excitation is a
harmonic input given by Eq. (2). Note that in parameter identification, one usually has the authority to
control the input signal. If, unfortunately, the excitation inputs are not what we can control, the proposed
method may fail.

The forced response of Eq. (3) includes homogeneous and particular parts. The homogeneous solution
represents the contribution from the initial condition that quickly dies away, i.e., the free response given in
Eq. (4). The sustained motion is given by the particular solution, which is given by

xp ¼ A cosðot� fÞ

where

A ¼
f

½ð2zoonÞ
2
þ ðo2

n � o2Þ
2
�1=2

and f ¼ tan�1
2zono
o2

n � o2

The complete solution to Eq. (3) is

xðtÞ ¼ xhðtÞ þ xpðtÞ (16)

where xh represents the free response given by Eq. (4). Since the wavelet transform is linear, the wavelet
transform of homogeneous (denoted by Wgxh(a, b)) and particular (Wgxp(a, b)) solutions can be computed
separately. The former has been obtained in Eq. (10). Consider Wgxp(a, b) now. Following the same line
presented in Section 2.1 for Wgxh(a, b), one can obtain

W gxpða; bÞ ¼

ffiffiffiffiffiffiffiffi
2pa
p

2
Ae�ð1=2Þo

2
0
�ð1=2ÞðoaÞ2 ½eo0oaþjðob�fÞ þ e�o0oa�jðob�fÞ� (17)

Assume that

o0oab1 (18)

which can be satisfied by taking o0 large enough. Then

je�o0oa�jðob�fÞj5jeo0oaþjðob�fÞj

and Eq. (17) can be approximated by

W gxpða; bÞ �

ffiffiffiffiffiffiffiffi
2pa
p

2
Aegþjd

where

g ¼ �1
2
o2a2 þ o0oa� 1

2
o2

0

d ¼ ob� f

Thus, under assumptions (9) and (18) the Morlet wavelet transform of the forced response can be
approximated by

W gxða; bÞ ¼W gxhða; bÞ þW gxpða; bÞ ¼

ffiffiffiffiffiffiffiffi
2pa
p

2
½A0e

aþjb þ Aegþjd� (19)

where recall that the homogenous part is given by Eq. (10).
In what follows, we shall show that

jW gxpða; bÞj5jW gxhða; bÞj (20)

if o0 is sufficiently large and the forcing frequency is small enough so that

oood (21)

To this aim, note that by Eq. (19)

W gxpða; bÞ
�� ��
W gxhða; bÞ
�� �� � A

A0
eg�a (22)
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In general, A0 is of the same order as A. The most common situation in practice is zero initial conditions.
Under zero initial conditions, it can be shown that if assumption (21) holds, then

A

A0
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q

which implies that A0 and A are of the same order. Next, we compute

g� a ¼ �o0aðod � oÞ þ 1
2
ð1� 2z2Þo2

na2 � 1
2
o2a2 þ zonb (23)

Under assumption (21), o0 can be chosen sufficiently large so that

g� a50 (24)

which implies (20).
Assumptions (9), (18), and (21) can be combined as

15o0oaoo0oda (25)

With assumption (25), the Morlet wavelet transform of the forced response can be approximated by that of the
free response, i.e., Wgx(a, b)EWgxh(a, b). Thus, the results for the free response also hold for the forced
response. In other words, it is still the transient response that is utilized for identification. As mentioned
previously, if the forcing term cannot be controlled, the forcing frequency may be close to the natural
frequency and inequality (25) does not satisfy. Then, the proposed method will fail.

3. Multi-degree-of-freedom system

In this section, the parameter identification method proposed in the previous section will be generalized to
multi-degree-of-freedom systems. Without loss of generality, the free response of a 2-dof system is taken as an
illustrative example here. The extension to general multi-dof systems is straightforward. Let zi and oni be the
damping ratio and natural frequency of the ith mode. The response of a 2-dof system can be expressed as the
sum of the contributions from 2 modes, i.e.,

xðtÞ ¼ x1ðtÞ þ x2ðtÞ (26)

where

xiðtÞ ¼ Aie
�zionit cosð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2i

q
onit� fiÞ; i ¼ 1; 2

denotes the contribution from the ith mode. Again, Ai and fi are determined by the initial conditions. If the
initial conditions can be chosen so that A1a0 and A2 ¼ 0, then the problem is reduced to the case of 1-dof. In
other words, only one mode is excited by proper initial condition, and the associated modal parameters can be
identified. In practice, however, it is very difficult to place the initial conditions on a specific mode shape.
Therefore, the system response usually contains the information from all modes, such as (26). The wavelet
transform is thus given by

W gxða; bÞ ¼W gx1ða; bÞ þW gx2ða; bÞ ¼

ffiffiffiffiffiffiffiffi
2pa
p

2
A1e

a1þjb1 þ A2e
a2þjb2

� �
where

ai ¼ �zionib�
1

2
ð1� 2z2i Þo

2
nia

2 � 2o0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2i

q
oniaþ o2

0

� �

bi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2i

q
onib� fi þ ziooonia� zi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2i

q
o2

nia
2

Again, the localization property of wavelet transform is utilized to identify the modal parameters of each
mode. The idea is to choose a proper scaling factor a1 so that the frequency window covers only the first mode,
and filter out the second mode. In other words,

jW gx1ða1; bÞjbjW gx2ða1; bÞj (27)
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Another scaling factor a2 can be chosen so that

jW gx2ða2; bÞjbjW gx1ða2; bÞj (28)

To this aim, it is assumed that

zio
1ffiffiffi
2
p (29)

Recall that if ziXð1=
ffiffiffi
2
p
Þ, then jWgxi(a, b)j does not have any peaks, and the two modes will be strongly

coupled. In this case, both modes have important contribution to Wgx(a, b). Separating the two modes
becomes very difficult.

With assumption (29), both jWgx1(a, b)jand jWgx2(a, b)j possess a peak. The peak of jWgx1(a, b)j can be
approximated by that of ea1 , which occurs at

a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z21

q
o0

ð1� 2z21Þon1

Similarly, the peak of jWgx2(a, b)j occurs approximately at

a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z22

q
o0

ð1� 2z22Þon2

At a ¼ a1, we have

jW gx1ða1; bÞj ¼

ffiffiffiffiffiffiffiffiffiffi
2pa1

p
A1

2
e�z1on1bþr1o2

0 (30)

jW gx2ða1; bÞj ¼

ffiffiffiffiffiffiffiffiffiffi
2pa1

p
A2

2
e�z2on2bþðr1þr2Þo2

0 (31)

where

r1 ¼
z21

2ð1� 2z21Þ

r2 ¼
ðz22 � z21Þo

2
r

2ð1� 2z21Þ
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z22

q
or �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z21

q� 	2

2ð1� 2z21Þ

and or ¼ on2/on141 is the ratio of the two natural frequencies. On the other hand, at a ¼ a2, we have

jW gx1ða2; bÞj ¼

ffiffiffiffiffiffiffiffiffiffi
2pa2

p
A1

2
e�z1on1bþðr3þr4Þo2

0 (32)

jW gx2ða2; bÞj ¼

ffiffiffiffiffiffiffiffiffiffi
2pa2

p
A2

2
e�z2on2bþr3o2

0 (33)

where

r3 ¼
z22

2ð1� 2z22Þ

r4 ¼
ðz21 � z22Þ

2ð1� 2z22Þ
2o2

r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z21

q
or �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z22

q� 	2

2ð1� 2z22Þo2
r

From Eqs. (30)–(33), it is obvious that if r2o0 and r4o0, the mode separation conditions (27) and (28) can
be achieved by taking o0 large enough. Larger o0 implies better frequency resolution and hence close
frequencies can still be distinguished. Thus, with large o0 mode separation is still possible for close modes.
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However, if the two modes are too close, they cannot be separated even with large o0. The question is how
close is too close? When zi are not small and or is close to 1, either r2 or r4 will be positive. As a result, either
Eq. (27) or Eq. (28) does not hold. It is concluded that the two modes are too close when either r2X0 or r4X0.
Fortunately, this situation is rare. As one can see, either r2 or r4 must be negative. Also, r2o0 and r4o0 can be
easily satisfied if zi are small enough (lightly damped systems) or or is large enough (weakly coupled modes).
Under conditions (27) and (28), the identification method presented for 1-dof system can be directly applied to
Wgx(a1, b)and Wgx(a2, b) to obtain modal parameters of the first and second modes, respectively. The above
results will be verified by an example close-mode system in the next section.
4. Simulation results

Five examples are investigated numerically to verify the theoretical analysis. Examples 1–3 are 1-dof as
shown in Fig. 1. For example 1, the system parameters are m ¼ 1 kg, c ¼ 0.7N s/m, k ¼ 7000N/m, and they
are m ¼ 1 kg, c ¼ 15Ns/m, k ¼ 70N/m for example 2. Example 1 is lightly damped ðzo1=

ffiffiffi
2
p
Þ and example 2

is heavily damped ðz41=
ffiffiffi
2
p
Þ. The Morlet wavelet transform (with o0 ¼ 10) of a free response of example 1 is

shown in Fig. 2. There is a peak at a0 ¼ 25. The corresponding magnitude and phase are plotted in Fig. 3. As
one can see, there exists a linear relationship for bA[1, 4] (positive small values). By curve fitting with least-
squares algorithm, one can get the slopes of magnitude and phase. Then, on and z can be easily estimated from
Eqs. (13) and (14). On the other hand, since example 2 is heavily damped, o0 is taken larger. Here we choose
o0 ¼ 20. Fig. 4 is the Morlet wavelet transform of a free response of example 2. Clearly, there is no peak. By
the remarks at the end of Section 2.1, we take a0 ¼ 4, a small value. In fact, other choices of a0 (not too large,
e.g., less than 12) can yield similar results. The magnitude and phase plots with a0 ¼ 4 are presented in Fig. 5.
Again, by the remarks at the end of Section 2.1, b is taken in the range of positive small values, i.e., bA[0.54,
0.72], which is smaller than that for example 1. Finally, the slopes of magnitude and phase can be obtained by
curve fitting and on and z can be estimated accordingly.
m f(t)

c

k

Fig. 1. The single-dof system for examples 1–3.

Fig. 2. The Morlet wavelet transform of free response for example 1.
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Fig. 3. (a) Magnitude plot and (b) phase plot for example 1 with a0 ¼ 25.

Fig. 4. The Morlet wavelet transform of free response for example 2.
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Fig. 5. (a) Magnitude plot and (b) phase plot for example 2 with a0 ¼ 4.
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Table 1

Simulation results for 1-dof systems.

Response o0 a0 Range of b on (rad/s) ôn (rad/s) Error in ôn (%) z ẑ Error in ẑ (%)

Example 1

Free 10 25 [1,4] 83.67 83.6660 0.0002 0.00418 0.0042 0.0832

Forced f(t) ¼ 5 cos(t) 10 23 [1,4] 83.67 83.6661 0.0002 0.00418 0.0042 0.0749

Example 2

Free 20 4 [054,0.72] 8.366 8.4343 0.8159 0.8969 0.9607 7.1108

Forced f(t) ¼ 0.1 cos (0.1t) 20 4 [0.36, 0.63] 8.366 8.3135 �0.6276 0.8969 0.9569 6.6843

Example 3

50 s of free response data 5 1000 [20,40] 0.5 0.5013 0.2655 0.1 0.1007 0.6763

15 s of free response data 5 1000 [11,15] 0.5 0.5037 0.7356 0.1 0.1031 3.1069
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The estimation results, including the results by forced responses, for examples 1 and 2 are summarized in
Table 1. In the following tables, on and z denote the actual natural frequency and damping ratio, whereas ôn

and ẑ represent the corresponding estimations. For forced responses, the external excitation for example 1 is
5 cos t, and that for example 2 is 0.1 cos 0.1t. Recall that the excitation frequency should be less than the
damped natural frequency (condition (21)). Thus, the excitation frequency has to be relatively small for
heavily damped systems. Table 1 indicates that the identification results for example 1 are quite satisfactory.
The estimation errors for both natural frequency and damping ratio using either free or forced responses are
all less than 0.1%. This is due to the good localization property of lightly damped systems, as mentioned in
Section 2. Because of the wide band frequency response of heavily damped systems, the identification results
for example 2 are not as good as those for example 1. However, the estimation error for natural frequency can
be kept less than 1%, and that for damping ratio can be kept less than 10%. Again, the results do not respect
free or forced responses.

Example 3 is a 1-dof system with system parameters of m ¼ 1 kg, c ¼ 0.1N s/m, k ¼ 0.25N/m. It possesses
very low natural frequency (on ¼ 0.5 rad/s and z ¼ 0.1) and very large settling time (2% settling time is 80 s).
The identification results are also shown in Table 1. The corresponding magnitude and phase plots are omitted
for brevity. If 50 s of data are used, the estimation accuracy for both on and z is as good as that for high-
frequency systems. If the data is more limited (e.g., 15 s), the estimation for on has the same level of accuracy.
Although the result for z is not as good as that for on, it is still reasonable (error about 3%). Note that for
systems with low natural frequency, a0 is usually large (1000 in example 3) and hence b should be taken larger
in order not to cover too much of the negative time zone to avoid the edge effect. However, large b will make
the corresponding time window cover the portion where the data are cut-off (another edge effect). In this case,
a better range of b is around the tail of the data. For example, if the data are 15 s, b is around 11–15.

Example 4 is a 4-dof system as shown in Fig. 6. It has been previously studied in Ref. [20]. Since the
damping ratios for all modes are small, better identification results are expected by choosing large enough o0.
Here we take o0 ¼ 35. The Morlet wavelet transform of the impulse response (which is not shown for brevity)
possesses 4 peaks. The scaling factors for the 4 modes are taken at these peaks, which are

a1 ¼ 64; a2 ¼ 34; a3 ¼ 23; a4 ¼ 20

The impulse response is the displacement response of each mass by assuming an impulse force applied at
mass 1. The displacement responses of all masses can be used for identification. Table 2 is the average
identification results using the 4 displacement responses. It is concluded that the present approach can be
equally applied to multi-dof systems with the same level of accuracy. The estimation errors obtained in Ref.
[20] are also provided for comparison. It is clear that the present results are better than those in Ref. [20]. This
is because no rules of choosing a and b are provided in Ref. [20]. It is believed that a better set of a and b is
taken in this paper.
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m1 = m2 = m3 = m4 = 1kg

Fig. 6. Schematic diagram of example 4.

Table 2

Simulation results for multi-dof systems.

Mode ai Range of

b

on (rad/s) ôn (rad/s) Error in

ôn (%)

Error in

ôn (%)

by [20]

z (%) ẑ (%) Error in

ẑ (%)

Error in

ẑ (%)

by [20]

Example 4

1 64 [1.8,2.7] 52.5904 52.6099 0.0373 0.12 0.26 0.26 0.811 0

2 34 [0.9, 1.8] 98.8345 98.8326 �0.0019 0.06 0.49 0.49 0.855 2.04

3 23 [0.9, 1.8] 142.5026 142.2502 �0.1772 �0.61 0.71 0.71 0.450 1.40

4 20 [0.9, 1.8] 164.9964 165.0494 0.0321 �8.56 0.83 0.83 �0.308 7.22

Example 5

1 1008 [3,4] 50.0922 50.0157 �0.1529 N/A 3.07 2.97 �3.145 N/A

2 915 [3,4] 53.7525 54.0553 0.5634 4.40 4.20 �4.592

c1

c2

c3

k1

k2

k3

m1

m2

c3 = 1.885 Ns/m

c2 = 0.8 Ns/m

c1 = 4.32 Ns/m

k2 = 200

k1 = k3 = 2500 N/m

m1 = m2 = 1kg

Fig. 7. Schematic diagram of example 5.
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Fig. 8. FFT of free response of example 5.

Fig. 9. Contour plot of the Morlet wavelet transform for example 5 with o0 ¼ 50.
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Example 5 is a 2-dof system, as shown in Fig. 7. The fast Fourier transform (FFT) of a free response shown
in Fig. 8 clearly demonstrates that the two modes are strongly coupled. From the system parameters, one can
get that the ratio of natural frequencies is or ¼ 1.073, confirming that the two modes are very close. However,
theoretical analysis shows that r2 ¼ �0.0021 and r4 ¼ �0.0027, both negative, implying that separation of the
two modes is possible by tuning o0 large enough. Indeed, the contour plot of the Morlet wavelet transform
with o0 ¼ 50, i.e., Fig. 9, shows two peaks. The identification results are also presented in Table 2. Although
the results are not as good as the case with well-separated modes, the errors for on are less than 1% and those
for z are less than 5%.

Below are some comments on the simulation results. First, the end effects due to the finite length of data,
commonly encountered in wavelet transform [8,9], also appear here, see, e.g., Figs. 3 and 5. This is the reason
why the translation factor b cannot be taken too small. Second, in calculating the phase angle of the wavelet
transform, one needs to unwrap the phase so that Eq. (12) (and hence Eq. (14)) is satisfied. Finally, it is
sometimes difficult to visually identify the peaks (to obtain ai) from the wavelet plot, especially for the case of
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close modes (e.g., in Fig. 9). However, they can be easily obtained by numerically finding the maximum from
the wavelet transformed data. On the other hand, the peaks may be easier to be identified using the technique
of reassigned wavelets [16]. We shall not pursue the issue here, but leave it as a future work.
5. Experimental results

The validity and feasibility of the proposed method are now examined experimentally. Consider a
mass–spring vibration model, which is shown in Fig. 10. The two masses are square steel plates with the same
size of 80mm� 80mm, and m1 ¼ 0.581 kg, m2 ¼ 0.612 kg. There are 4 holes at the corners on each plate, and
4 vertical beams are used to constrain the mass motion along the vertical direction. Two identical springs
(k1 ¼ 2686N/m) are placed on the diagonal positions between m1 and base. Hence, the effective spring
constant is 2k1. Similarly, two identical springs (k2 ¼ 7050N/m) are placed between m1 and m2 with an
effective spring constant of 2k2. An accelerometer (B&K type 4391) is attached to m1 to measure the impulse
response of m1. Two examples, one single-dof and one 2-dof, are investigated. The associated parameters are
listed in Table 3, where the actual damping is unknown. For the single-dof case, only the lower level of the
Fig. 10. Experimental set-up: (a) configuration of the experimental set-up and (b) photo of the vibration system.
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Table 3

Experimental results.

o0 a0 Range of b on (rad/s) ôn (rad/s) Error in ôn (%) z ẑ (%)

Example 6

Wavelet 5 56 [0.2, 0.5] 96.205 93.6369 �2.6694 N/A 1.6

Fourier N/A 96.205 87.96 �8.5702 N/A 4.2

Example 7

Mode 1

Wavelet 5 80 [0.25, 0.45] 63.767 64.3192 0.866 N/A 9.71

Fourier N/A 63.767 65.973 3.4595 N/A 15.2

Mode 2

Wavelet 5 26.5 [0.1, 0.3] 229.2895 225.7683 �1.536 N/A 3.97

Fourier N/A 229.2895 223.053 �2.7199 N/A 4.97

Fig. 11. The Morlet wavelet transform for example 6: (a) impulse response; (b) wavelet transform contour; (c) magnitude plot and

(d) phase plot.
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experiment is used, i.e., m2 and 2k2 are removed. An impact hammer gives a vertical impulse force on m1 for
the single-dof case and on m2 for the 2-dof case. The recorded vibration signals are denoised by a signal
analyzer (B&K type 2035). The FFT of the denoised signal can thus be obtained by the analyzer, which is used
for identification by the Fourier approach. At the same time, the signal (un-denoised) is also used for
identification by the proposed Morlet wavelet method. The signal-to-noise ratio is about 20 dB.

Fig. 11 shows the magnitude and phase plots of the Morlet wavelet transform of the impulse response for
example 6 with a0 ¼ 56. The natural frequency and damping ratio for example 6 can now be identified with the
proposed approach. Similarly, the magnitude and phase plots for the second mode of example 7 are shown in
Fig. 12. Those for the first mode are omitted for brevity. The two scales (a1 ¼ 80 and a2 ¼ 26.5) are taken
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Fig. 12. The Morlet wavelet transform for example 7: (a) impulse response; (b) wavelet transform contour; (c) magnitude plot of 2nd

mode and (d) phase plot of 2nd mode.
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where the Morlet wavelet transform attains local maximum in magnitude. The estimation results for the two
examples are shown in Table 3. Each estimate is the average of 15 times of experiments. From Table 3, one can
see that all of the identification errors by the proposed method are within 3%. Also, the results for the 2-dof
system are as good as those for the 1-dof system. Note that when b is large, the wavelet plots do not exhibit a
linear trend, as can be easily seen from Figs. 12(c) and 13(c). This is due to the fact that Wgx(a, b) decreases
exponentially with the increase of b. Thus, the contribution from noise, that is present in the experimental data
but not in the simulations, will dominate the wavelet transform.

Finally, the Fourier approach is also applied to examples 6 and 7, and the results are also presented in
Table 3. The damping is estimated by the 3-dB method [24]. Although the Fourier approach can obtain
acceptable results (errors less than 10%), the results are not as good as those by the proposed method, as seen
from Table 3. The estimation errors of natural frequencies by the proposed method are only 1/2 to 1/4 of those
by the Fourier approach. Since actual damping ratio is unknown, no comparison can be made. However, it is
believed that the proposed method can provide a much better estimation for damping. As mentioned at the
beginning of Introduction, the Fourier approach cannot give good estimation for damping. Note that the
Fourier approach here has used the denoised data. If the un-denoised data were used, the results can be worse.
Moreover, it is obvious that the Fourier approach cannot be applied to example 2 (heavily damped system)
and example 5 (strongly coupled modes), whereas the proposed method can still get good results.

6. Conclusions

In this study, the Morlet wavelet transform of the free or forced response has been utilized to identify the
natural frequency and damping ratio of vibration systems. The method can be applied to both single- and
multi-dof systems with the same level of accuracy, and it can be applied to lightly or heavily damped systems.
The method is based on a relationship between the system parameters and the Morlet wavelet transform of the
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system response. It is found that the validity of the relationship depends on the scaling factor a, translation
factor b, and the frequency parameter o0 of the Morlet wavelet transform. Therefore, the identification
accuracy depends also on a, b, and o0. Proper choice of a, b, and o0 is crucial for good identification results.
A general guideline of choosing a, b, and o0 has been proposed in this paper.

Numerical simulations showed that all identification errors (for natural frequency and damping ratio) are
less than 1% for lightly damped systems, 1-dof or 4-dof. For the heavily damped or strongly coupled system,
the result for on is still good (less than 1% in error). Although the result for z is not as good as those for lightly
damped or lightly coupled systems, the estimation error can still be kept within 10%. Moreover, the
experimental results showed that good identification accuracy (less than 3% in error) can still be obtained even
for noisy 1-dof or multi-dof systems. These results clearly verify the theoretical analysis.
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Appendix A

This appendix is to prove Eq. (8). Let t̂ ¼ tþ a. Then, it is easy to see that

Z 1
�1

eð�1=2ÞðtþaþjbÞ
2

dt ¼
Z 1
�1

eð�1=2Þðt̂þjbÞ
2

dt̂

Consider now the contour integral

I ¼

I
C

eð�1=2Þz
2

dz

where C is the rectangular contour shown in Fig. A1, which is composed of Li, i ¼ 1–4. Since e�ð1=2Þz
2

is
analytic inside C, I ¼ 0, i.e.,

Z
L1

eð�1=2Þz
2

dzþ

Z
L2

eð�1=2Þz
2

dzþ

Z
L3

eð�1=2Þz
2

dzþ

Z
L4

eð�1=2Þz
2

dz ¼ 0

It is easy to show that the integrals over L2 and L4 approach zero when R-N. Also, when R-N, we have

Z
L1

eð�1=2Þz
2

dz ¼

Z 1
�1

eð�1=2Þx
2

dx and

Z
L3

eð�1=2Þz
2

dz ¼ �

Z 1
�1

eð�1=2ÞðxþibÞ2 dx

The former integral is well known to be
ffiffiffiffiffiffi
2p
p

. Hence, we obtain Eq. (8).
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Fig. A1. The contour C.



ARTICLE IN PRESS
S.-L. Chen et al. / Journal of Sound and Vibration 323 (2009) 130–147 147
References

[1] S.-L. Chen, H.-C. Lai, K.-C. Ho, Identification of linear time varying systems by Haar wavelets, International Journal of System

Science 37 (9) (2006) 619–628.

[2] C.K. Chui, An Introduction to Wavelets, Academic Press, Boston, 1992.

[3] M.I. Doroslovacki, H. Fan, Wavelet-based linear system modeling and adaptive filtering, IEEE Transactions on Signal Processing 44

(5) (1996) 1156–1167.

[4] R. Ghanem, F. Romeo, A wavelet-based approach for the identification of linear time-varying dynamical systems, Journal of Sound

and Vibration 234 (4) (2000) 555–576.

[5] R. Ghanem, F. Romeo, A wavelet-based approach for model and parameter identification of nonlinear systems, International Journal

of Nonlinear Mechanics 36 (2001) 835–859.

[6] B. Jawerth, W. Sweldens, An overview of wavelet based multiresolution analysis, Society for Industrial and Applied Mathematics 36

(3) (1994) 377–412.

[7] R. Johansson, System Modeling and Identification, Prentice-Hall, Englewood Cliffs, NJ, 1993.

[8] T. Kijewski, A. Kareem, On the presence of end effects and associated remedies for wavelet-based analysis, Journal of Sound and

Vibration 256 (5) (2002) 980–988.

[9] T. Kijewski, A. Kareem, Wavelet transforms for system identification in civil engineering, Computer-Aided Civil and Infrastructure

Engineering 18 (5) (2003) 339–355.

[10] C.-H. Lamarque, S. Pernot, A. Cuer, Damping identification in multi-degree-of-freedom systems via a wavelet-logarithmic

decrement—part 1: theory, Journal of Sound and Vibration 235 (3) (2000) 361–374.

[11] J. Lardies, S. Gouttebroze, Identification of modal parameters using the wavelet transform, International Journal of Mechanical

Science 44 (11) (2002) 2263–2283.

[12] D.E. Newland, Wavelet analysis of vibration—part 1: theory, ASME Journal of Vibration and Acoustics 116 (1994) 409–416.

[13] D.E. Newland, Wavelet analysis of vibration—part 2: wavelet maps, ASME Journal of Vibration and Acoustics 116 (1994) 417–425.

[14] M. Pawlak, Z. Hasiewicz, Nonlinear system identification by the Haar multi-resolution analysis, IEEE Transactions on Circuits and

Systems I: Fundamental Theory and Applications 45 (1998) 945–961.

[15] S. Palavajjhala, R.L. Motard, B. Joseph, Process identification using discrete wavelet transforms: design of prefilters, AIChE Journal

42 (3) (1996) 777–790.

[16] Z. Peng, F. Chu, P. Tse, Detection of the rubbing caused impacts for rotor–stator fault diagnosis using reassigned scalogram, Journal

of Mechanical Systems and Signal Processing 19 (2) (2005) 391–409.

[17] R.D. Priebe, G.R. Wilson, Wavelet applications to structural analysis, IEEE International Conference on Acoustics, Speech, and

Signal Processing 3 (1994) 205–208.

[18] A.N. Robertson, K.C. Park, K.F. Alvin, Identification of structural dynamics models using wavelet-generated impulse response data,

ASME Journal of Vibration and Acoustics 120 (1998) 261–266.

[19] A.N. Robertson, K.C. Park, K.F. Alvin, Extraction of impulse response data via wavelet transform for structural system

identification, ASME Journal of Vibration and Acoustics 120 (1998) 252–260.

[20] M. Ruzzene, A. Fasana, L. Garibaldi, B. Piombo, Natureal frequencies and dampings identification using wavelet transform:

application to real data, Mechanical Systems and Signal Processing 11 (1997) 207–218.

[21] D.A. Schoenwald, System identification using a wavelet-based approach, Proceedings of the 32nd IEEE Conference on Decision and

Control, Vol. 4, 1993, pp. 3064–3065.

[22] J. Slavic, I. Simonovski, M. Boltezar, Damping identification using continuous wavelet transform: application to real data, Journal of

sound and Vibration 262 (2003) 291–307.

[23] W.J. Staszewski, J.E. Cooper, Flutter data analysis using the wavelet transform, Proceedings of the MV2 International Congress on

New Advances in Modal Synthesis of Large Structures: Nonlinear Damped and Non-Deterministic Cases, Lyon, France, 5–6 October

1995, pp. 549–561.

[24] W.J. Staszewski, Identification of damping in MDOF systems using time-scale decomposition, Journal of Sound and Vibration 203 (2)

(1997) 283–305.

[25] W.J. Staszewski, Identification of nonlinear systems using multi-scale ridges and skeletons of the wavelet transform, Journal of Sound

and Vibration 214 (4) (1998) 639–658.

[26] W.J. Staszewski, J.E. Cooper, Wavelet approach to flutter data analysis, AIAA Journal of Aircraft 39 (1) (2002) 125–132.

[27] N. Sureshbabu, J.A. Farrell, Wavelet-based system identification for nonlinear control, IEEE Transaction on Automatic Control 44 (2)

(1999) 412–417.

[28] M.K. Tsatsanis, G.B. Giannakis, Time-varying system identification and model validation using wavelets, IEEE Transactions on

Signal Processing 41 (12) (1993) 3512–3523.

[29] B. Yan, A. Miyamoto, A comparative study of modal parameter identification based on wavelet and Hilbert–Huang transformation,

Computer-Aided Civil and Infrastructure Engineering 21 (2006) 9–23.


	Wavelet analysis for identification of damping ratios and natural frequencies
	Introduction
	Single degree-of-freedom system
	Identification by free response
	Identification by forced response

	Multi-degree-of-freedom system
	Simulation results
	Experimental results
	Conclusions
	Acknowledgements
	References


